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Previous overview articles
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The mythology of subgroup analysis in Pharma
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Common practices ”Good practices”

One covariate at a time strategy, (e.g test 
interactions at alpha=0.1)

Subgroups should be “pre-specified” and 
“biologically plausible”

Multiplicity does not need to be controlled 
since “it is for internal decision making”, “not 

for submission”

The central role of covariate-by-treatment 
interaction test, as a “gatekeeper” (no testing 

in subgroups unless passing the interaction 
test)

Accounting for uncertainty in the very last step 
of a multi-stage strategy, forgetting about 

“preliminary data looks” 

No testing in subgroups unless the effect in 
the overall population is significant 

(consistency)

The subgroup search involves human 
interaction that is rarely reported

“Data-driven elements should be minimized”

“Null findings” rarely reported Interpreting results “with caution”



Principled/disciplined data-driven subgroup analysis (SA)

• SA is a special case of statistical learning, rather than merely 
multiple testing problem

• A key challenge is estimating individual treatment effects (not 
observable on any subject)

• Intersection and cross-fertilization of different fields: causal 
inference, machine learning, multiple hypothesis testing.
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Learning heterogeneity of TE from the data
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Causal 
inference

Machine 
learning

Multiple 
hypothesis 

testing

𝐶𝐴𝑇𝐸 𝑥 = Δ 𝑥 = 𝐸 𝑌(1) 𝑋 = 𝑥 − 𝐸 𝑌(0) 𝑋 = 𝑥

CATE: Conditional Average Treatment Effect (a.k.a ITE, PTE)

𝑋- possibly high dimensional Post-selection inference



The set up: individual TE

• Each patient has two potential outcomes of 𝑌, i.e. 𝑌𝑖 0 , 𝑌𝑖 1 corresponding to 𝑇 = 0,1; only one 
outcome is observed (SUTVA)

• Outcome function, given pre-treatment covariates
𝑚 𝑡, 𝑥 = 𝐸(𝑌𝑖 𝑡 𝑋 = 𝑥 , 𝑡 ∈ {0,1}

• Under treatment ignorability, ensured by randomization in RCT, or “no unmeasured confounder” 
assumption in OC

𝑚 𝑡, 𝑥 = 𝐸 𝑌 𝑇 = 𝑡, 𝑋 = 𝑥
• Treatment contrast or conditional causal effect (CATE)

Δ 𝑥 = 𝑚 1, 𝑥 − 𝑚 0, 𝑥
• We can write the response surface as

𝑚 𝑡, 𝑥 = ℎ 𝑥 +
1

2
Δ 𝑥 2𝑡 − 1 , 

• ℎ 𝑥 is the main covariate (prognostic) effect 
• In studies with non-randomized treatments, we need to estimate propensity scores

𝜋 𝑥 = 𝑃 𝑇 = 1 𝑋 = 𝑥
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Defining subgroups based on Δ 𝑥 = CATE(𝑥)

• Assume we managed to estimate Δ 𝑥

– Perhaps, simply as Δ 𝑥 = 𝐸 𝑌 𝑇 = 1, 𝑋 = 𝑥 − 𝐸 𝑌 𝑇 = 0, 𝑋 = 𝑥
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Δ 𝑥

S 𝑥 = {𝑥: Δ 𝑥 > 𝛿)
e.g. for 𝛿=0

S 𝑥 is learned from  data 
as a biomarker signature: 

e.g. 
{𝑥 : 𝑋1 > 𝑐1 & 𝑋2 = 𝑐2}

May not ensure that each individual 
Δ 𝑥𝑖 > 𝛿, e.g. 𝐸 Δ 𝑥 > 𝛿, for 𝑥 ∈
S 𝑥

Individualized treatment regimen/rule 
(ITR)
𝐷(𝑥) =1 if Δ 𝑥 > 𝛿, 𝐷(𝑥) =0 if 
Δ 𝑥 < −𝛿 , otherwise treat randomly



Literature on subgroup identification is diverse
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S 𝑥 = {𝑥: Δ 𝑥 > 𝛿)



How to read papers on subgroup ID?
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What to look for in papers on 
Subgroup Identification?



The number of predictors the procedure can handle

• 𝑝=1  

– focus on selecting a cutoff for a single continuous biomarker (e.g. 
STEPP method by Bonetti and Gelber, 2000;  Han et al, 2021)

• 𝑝 ≈10-20

• 𝑝 ≈100-1000

• 𝑝 ≫ 𝑛

– Feature space grows with sample size
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Model complexity

• What is the complexity of the “model space” where the 
subgroups reside?

– Subgroups defined based on “black box” functions of covariates, 
መ𝑆 𝑥 = {𝑥: Δ 𝑥 > 𝑐}

– Subgroups defined by simple biomarker signatures with up to 2 

variables, መ𝑆 𝑥 = {𝑥: 𝑋1 ≤ 𝑐1, 𝑋3 > 𝑐3}

• How is model complexity controlled to prevent data overfitting?
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Does it apply only to RCT or to OS as well?

• For observational data, there is an interplay between 
confounders and modifiers of treatment effect, making  model 
selection more challenging
– Confounders are predictive of both treatment 𝑇 and outcome 𝑌

– Effect modifies are predictive of CATE, Δ(𝑥)
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What output does the method produce?

• Individualized treatment contrast, Δ 𝑥

• Signatures of promising subgroups, S 𝑥 = {𝑥: 𝑋1 ≤ 𝑐1, 𝑋3 > 𝑐3}

• Optimal treatment assignment rule 𝐷 𝑥 = 1 𝑖𝑓 Δ 𝑥 > 𝛿, otherwise 
𝐷 𝑥 = 0

• Predictive biomarkers (a.k.a. effect modifiers ordered) by variable 
importance score.
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What inference is done, if at all?

• Inference on Δ 𝑥
– Pointwise CI for random forests (Wager and Athey, 2018), CI for Δ 𝑥 estimated from 

LASSO (Ballarini et al, 2018), 

– Simultaneous bands on Δ 𝑥 from semiparametrics (Guo at al., 2021)

• Inference on certain features of Δ 𝑥
– Testing for presence of  treatment effect heterogeneity (via latent mixtures, Shen and He, 

2015) or 

– Machine learning methods with cross-fitting (Chernozhukov, 2019)

• Controlling the probability of selecting the right subgroups,  መ𝑆 𝑥 vs 
𝑆𝑡𝑟𝑢𝑒 𝑥

– Bayesian credible intervals, Pr( መ𝑆𝑙𝑜𝑤𝑒𝑟 ⊆ 𝑆𝑡𝑟𝑢𝑒 ⊆ መ𝑆𝑢𝑝𝑝𝑒𝑟) > 1 − 𝛼 (Schnell et al, 2018)
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What inference is done, if at all (cont.)?

• Estimating “honest effect” in selected subgroup መ𝑆 𝑥
– Using bootstrap correction for optimism bias (Foster et  al, 2011; Guo and He, 2020)

– Bayesian model averaging (Bornkamp et al, 2017)

• Inference on ITR, 𝐷 𝑋
– Evaluating expected benefits if the regimen (rule) were applied to all patients, 

– Value = 𝐸{𝑌(𝐷 𝑋 )} contrasted with the value of “always treat” or other strategy

• Controlling the False Discovery Rate
– E.g., for selection of predictive biomarkers (Wei et al, 2021; Sechidis et al, 2021)
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Typology of Subgroup Identification; Lipkovich et al. (2017)

𝑥
Global outcome modeling: Y

𝑚(1, 𝑥)

𝑚(0, 𝑥)

𝑚(𝑡, 𝑥)

Δ 𝑥

𝑥

Local treatment effect modeling : Subgroup search

Enhanced treatment effect 
for drug A

𝛿=0

Δ(𝑥)

Direct treatment effect modeling

𝛿=0

𝑥

Δ(𝑥)

𝛿=0

𝑥

Individual treatment regimen modeling: 𝐬𝐢𝐠𝐧{𝚫(x)}

Prescribe APrescribe B

Δ(𝑥)



𝑚(1, 𝑥)

𝑚(0, 𝑥)

𝑥

Global outcome modeling: Y

𝑚(𝑡, 𝑥)

Δ 𝑥

Global outcome modeling

A multi-stage (multi-model) process termed meta-learning 
As a precursor, see Virtual Twins (VT) by Foster et al (2011)

• T-(two) learning: 
– Fit 𝑚 𝑡, 𝑥 = 𝐸(𝑌|𝑇 = 𝑡, 𝑋 = 𝑥), separately by arms
– Compute  Δ 𝑥 = ෝ𝑚 1, 𝑥 − ෝ𝑚 0, 𝑥

• S-(single) learning:
– Fit 𝑚 𝑡, 𝑥 = 𝐸(𝑌|𝑇 = 𝑡, 𝑋 = 𝑥), in pooled data with X*T interactions added
– Compute  Δ 𝑥 = ෝ𝑚 1, 𝑥 − ෝ𝑚 0, 𝑥

• X-learning  based on two version of CATE 

– Δ1(𝑥) by modeling 𝑌 1 − ෝ𝑚 0, 𝑥 , on treated subjects

– Δ0(𝑥) by modeling ෝ𝑚 1, 𝑥 − 𝑌 0 , on control subjects

– Compute  Δ 𝑥 = Δ0 𝑥 𝜋 𝑥 + Δ1(𝑥)(1 − 𝜋 𝑥 )

• Regularization challenges when modeling CATE
– Separate penalties for prognostic and predictive effects (Imai & Ratkovic, 2013)
– Separate modeling of counterfactuals in X-learning (Künzel et al, 2019)
– Separate penalties for prognostic and predictive effects in Bayesian causal forests 

(Hahn et al, 2020)
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Direct treatment effect modeling

Global treatment effect modeling

𝛿=0

𝑥

Δ(𝑥)

Directly evaluates Δ(𝑥) obviating estimating main 
effects ℎ 𝑥
• Adopt any tree-based method by modifying splitting criterion

– Interaction trees, e.g. Su et al (2009) maximizing at every split 
Δ𝑙𝑒𝑓𝑡 − Δ𝑟𝑖𝑔ℎ𝑡

2

– Causal trees and causal forests (Athey and Imbens, 2016; 
Wager and Athey, 2018)

• Local non-parametric estimates of Δ(𝑥) by averaging 
treatment effects from terminal nodes across trees

• “Honest trees”: divide data into two halves, use one for 
splitting and the second for estimating Δ 𝑥

• Inference for random forests (Efron, 2013 and Wager et al. 
2014)

• Modified outcome and covariate (functions) methods

– Tian et al. (2014) and Chen et al. (2017), see next
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From Modified Outcome to Modified Covariate [function] Methods

• A broad framework for directly estimating Δ(𝑥) for different types of outcomes/loss 
functions (R package personalized)

– 𝐴 = 2𝑇 − 1 ∈ {−1,1}, 𝜋 𝑥 = Pr 𝑇 = 1 𝑋 = 𝑥 ,  𝜋 𝐴|𝑥 = 𝐴𝜋 𝑥 +
1−𝐴

2

𝐸
𝐴𝑌

𝜋 𝐴|𝑥
− 𝑔 𝑥

2

𝑋 = 𝑥 → 𝑚𝑖𝑛 returns 𝑔 𝑥 = Δ 𝑥 , 

𝐸
1

𝜋 𝐴|𝑥
2𝐴𝑌 − 𝑔 𝑥

2
𝑋 = 𝑥 has the same estimand 𝑔 𝑥 = Δ 𝑥 , and so is

𝐸
4

𝜋 𝐴|𝑥
𝑌 −

𝐴

2
𝑔 𝑥

2

𝑋 = 𝑥 ,  W-learning in Chen et al. (2017)

• Choosing different loss functions allows for different outcomes types 

• Options for modeling 𝑔 𝑥 : linear (e.g. via penalized regression) reduces it to 
multiplying each covariate by A/2 (modified covariate), gradient boosting, …

19

Probability  of 
receiving the 
treatment actually 
received

MOM

MCM



Treatment effect modeling: R-learning

• R-learning for estimation of Δ 𝑥 (Zhao et al, 2018; Nie and Wager, 
2021; inspired by Robinson’s transformation and Double/Debiased 
Machine Learning of Chernozhukov, 2017)

• Note, Δ 𝑥 = 𝐸
𝑌−𝑚(𝑥)

𝑇−𝜋(𝑥)
, where 𝑚 𝑥 = 𝐸 𝑌 𝑋 = 𝑥

– Prognostic effects and propensity (for non-randomized trials) need to be estimated at first 
step, but the focus is placed on the target Δ 𝑥

– 𝑚(𝑥𝑖) and 𝜋(𝑥𝑖) are estimated from off-the-shelf ML methods and their cross-fitted 
versions are plugged-in ෝ𝑚−𝑖(𝑥𝑖) and ො𝜋−𝑖(𝑥𝑖)

20

෩Δ ∙ = 𝑎𝑟𝑔𝑚𝑖𝑛Δ
1

𝑁


𝑖=1

𝑁

[𝑌𝑖 −𝑚 𝑥𝑖 − {𝑇𝑖−𝜋(𝑥𝑖)}Δ(𝑥𝑖)]
2 + Λ𝑁{Δ(∙)}



Software for subgroup identification

• http://biopharmnet.com/subgroup-analysis-software/
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Simulation example:  A single data set

• N =1000, randomization 3:1, 𝑇 ∈ {0,1}
• 𝑋1, 𝑋3, 𝑋4~𝑁(0,1), 𝑋2 ∈ 1,2,3 with 𝑝 = 1/3
• 𝑌 = 100 − 𝑋1 + 5𝑋2 + 𝑇{𝑔1 𝑋3 +𝑔2 𝑋4 } + 𝜀, 𝜀~𝑁(0,1)

• 𝑔1 𝑥 = 𝑎 − 𝑏 𝑥 − 0.5 2, 0 ≤ 𝑥 ≤ 1

• 𝑔2 𝑥 =
𝑐

1+𝑒−𝑑(𝑥−0.5)
, 0 ≤ 𝑥 ≤ 1; else 𝑔2 𝑋 = 0

• Add 16 noise biomarkers 𝑋5, … , 𝑋20~𝑁(0,1) to the analysis data set
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Treatment effect: Δ 𝑥 = 𝐸(𝑌 1 − 𝑌 0 |𝑥)
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Overall ATE: Δ=0.21

TE within subgroup: 
𝐸 Δ 𝑥 Δ 𝑥 > 0 = 0.45

Subgroup size: 
𝐸 𝐼 Δ 𝑥 > 0 = 0.69



Methods

• T, S, X - learning  
• Causal forest (CF)
• Modified Outcome method (MOM) with RF and Xgboost
• R - learning 

• For each method, identify subgroup signature on fitting training data:  
መ𝑆 𝑋 = {𝑥: 𝐼(Δ𝑡𝑟𝑎𝑖𝑛 𝑥 > 0)}

• Evaluate average treatment effect in identified subgroup መ𝑆 on independent test data 
(n=10,000), 

𝑇𝐸 መ𝑆 = 𝐸𝑋 Δ 𝑋 |Δ𝑡𝑟𝑎𝑖𝑛 𝑋𝑡𝑒𝑠𝑡 > 0

• Compute subgroup utility index: Treatment effect per subject in overall population

𝜂 = 𝑇𝐸 መ𝑆 ×
𝑛( መ𝑆)

𝑛
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Estimating CATE with NO noise variables in the analysis set

• Regularization bias towards zero: largest in causal forest and 
smallest in T-learning

• large variability: MOM (not shown) and T learning
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Red line is smoothed predicted CATE, black line 45 degrees

𝜂 0.28 0.32 0.27 0.23 0.27 ATE=0.21



Estimating CATE, with noise variables in the analysis set

• Regularization bias towards zero: largest in causal forest and 
smallest in T-learning

• large variability: MOM (not shown) and T learning
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Red line is smoothed predicted CATE, black line 45 degrees

𝜂 0.24 0.25 0.28 0.24 0.26 ATE=0.21



Summary

• A shift from ad-hoc “subgroup chasing” methods towards principled methods of 
personalized/precision medicine utilizing ideas from causal inference, machine learning 
and multiple testing emerged in last 10 years producing a vast number of diverse 
approaches

• For naïve multistage methods (requiring fitting the response surface 𝑚(𝑡, 𝑥)) regularization 
bias can be large, as each step is optimized for prediction, rather than for the final 
estimation target (Künzel et al, 2019; Chernozhukov, 2019; Nie and Wager, 2021)

• While methods that estimate Δ(𝑥) obviating fitting main effects ℎ(𝑥) are attractive, 
substantial efficiency can be gained by using doubly-robust methods, such as utilizing 
augmented inverse propensity weighted scores, even in the context of RCT where 
propensities are known (Athey and Wager, 2021; Kennedy, 2021)

• There is increasing interest in developing ITRs respecting constraints on costs, adverse 
events, sample size (Wang et al, 2018; Athey and Wager, 2021; Cai et al, 2021)

• There is a need in interpretable personalized solutions (ITR’s) within a pre-defined policy 
class, e.g tree-structured or boxes (Laber and Zhao, 2015; Cai et al, 2021; Doubleday et al., 
2021)

27



References

Athey S and Wager S (2021) Policy learning with observational data. Econometrica. 89(1),133-161.

Ballarini NM, Rosenkranz GK, Jaki T, König F, Posch M (2018) Subgroup identification in clinical trials via the predicted individual treatment effect. PLoS
One 13:e0205971 

Bornkamp B, Ohlssen D, Magnusson BP, Schmidli H (2017) Model averaging for treatment effect estimation in subgroups. Pharm Stat 16,133–142.

Cai H, Lu Wenbin, West RM, Mehrotra DV, Huang L. (2021). CAPITAL: Optimal subgroup identification via constrained policy tree search. 
arXiv:2110.05636v1

Chen S, Tian L, Cai T, Yu M (2017) A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics. 73(4),1199–
1209.

Chernozhukov V, Demirer M, Duflo E, and Fernandez-val (2019) Generic machine learning inference on heterogenous treatment effects in randomized 
experiments. arXiv:1712.04802v4.

Doubleday K, Zhou H, Fu H, Zhou J. (2021) Risk controlled decision trees and random forests for precision medicine. Statistics in medicine. To appear

Guo X, He X. Inference on selected subgroups in clinical trials. J Am Stat Assoc 116(535),1498-1506.

Guo W, Zhou X-H, Ma S (2021) Estimation of optimal individualized treatment rules using a covariate-specific treatment effect curve with high-dimensional 
covariates. J Am Stat Assoc 116(533),309-321.

Hahn PR, Murray JS, Carvalho CM. (2019) Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects. 
Bayesian Anal. 15(3), 965-1056.

Han Y, Tang S-Y, Lin H-M, Hsu JC. (2021) Exact simultaneous confidence intervals for logical selection of a biomarker cut-point. Biometrical journal 1-18.

Hermansson E and Svensson D. (2021) On discovering treatment-effect modifiers using virtual twins and causal forest ML in the presence of prognostic 
biomarkers. In O. Gervasi et al. (Eds.): ICCSA, pp. 624–640.

28



References (cont.)

Huling JD and Yu M. (2021) Subgroup identification using the personalized package. Journal of statistical software. 98(5) 1-60.

Jemielita TO and Mehrotra DV (2019) PRISM: Patient Response Identifiers for Stratified Medicine, arXiv:1912.03337

Kennedy EH (2021). Optimal doubly robust estimation of heterogeneous causal effects. arXiv:2004.14497v2.

Künzel SR, Sekhona JS, Bickel PJ and Yu B. (2019) Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the 
National Academy of Sciences, 116(10), 4156-4165.

Kitagawa T, and Tetenov A. (2018) Who should be treated? Empirical Welfare Maximization methods for treatment choice. Econometrica 86(2), 591–616.

Laber EB, Zhao YQ (2015) Tree-based methods for individualized treatment regimes. Biometrika 102,501–514.

Lipkovich I, Dmitrienko A (2014) Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect clinical trials using SIDES. 
J Biopharm Stat 24,130–153.

Lipkovich I, Dmitrienko A, D’Agostino BR (2017) Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials. Stat Med 
36,136–196.

Loh WY, Fu H, Man M, Champion V, Yu M (2016) Identification of subgroups with differential treatment effects for longitudinal and multiresponse
variables. Stat Med 35,4837–4855.

Nie X and Wager S. (2021) Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108(2), 299–319.

Qi Z, Lui B, Fu H, Lui Y. (2020). Multi-armed angle-based direct learning for estimating optimal individualized treatment rules with various outcomes. J Am 
Stat Assoc 115(530), 678-691.

Reeve HW, Cannings TI, and Samworth RJ. (2021) Optimal subgroup selection. arXiv:2109.01077.

Schnell PM, Müller P, Tang Q, Carlin BP (2018) Multiplicity-adjusted semiparametric benefiting subgroup identification in clinical trials. Clinical trials 
15(1),75-86.

29



References (cont.)

Sechidis K, Kormaksson M, Ohlssen D (2021) Using knockoffs for controlled predictive biomarker identification. Statistics in Medicine 

40,5453–5473.

Shen C, Li X, and Jeong J. (2016) Estimation of treatment effect in a sub-population: an Empirical Bayes approach. Journal of Biopharmaceutical 

Statistics 26(3),507–518.

Shen J, He X. (2015). Inference for subgroup analysis with a structured logistic-normal mixture model. J Am Stat Assoc 110,303–312.

Thomas M, Bornkamp B, Seibold H. (2018) Subgroup identification in dose-finding trials via model-based recursive partitioning. Statistics in 

Medicine 37(10),1608–1624.

VanderWeele TY, Luedtke AR, van der Laan MJ, Kessler RC. (2019) Selecting optimal subgroups for treatment using many covariates. 

Epidemiology 30,334-341.

Wager S, Athey S (2018) Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc 113,1228–1242. 

Wang Y, Fu H, and Zeng D. (2018) Learning optimal personalized treatment rules in consideration of benefit and risk: with an application to 

treating type 2 diabetes patients with insulin therapies. J Am Stat Assoc 113(521), 1-13. 

Wei Y, Hsu JC, Chen W, Chew EY, Ding Y. (2021) Identification and inference for subgroups with differential treatment efficacy from 

randomized controlled trials with survival outcomes through multiple testing. Statistics in Medicine. 2021;1–18.

Zhang Y, Schnell P, Song C, Huang B, Lu B. (2021) Subgroup causal effect identification and estimation via matching tree. Comp Stat and Data 

Analysis. https://doi.org/10.1016/j.csda.2021.107188

Zhao Y, Zheng D, Rush AJ, Kosorok MR. (2012) Estimating individualized treatment rules using outcome weighted learning. Journal of the 

American Statistical Association 107,1106–1118.

30

https://doi.org/10.1016/j.csda.2021.107188


Thank you!
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Direct estimation of CATE: A-learning 

• It is easy  to see that the following modified covariate function method has as 
population minimizer, 𝑔 𝑥 = Δ(𝑥)

𝐸 𝑌 − (𝑇 − 𝜋(𝑥))𝑔 𝑥
2
𝑋 = 𝑥 → 𝑚𝑖𝑛

• Like with W-method, this generalizes to different types of outcomes by replacing 
squared loss with appropriate loss functions (See Chen et al., 2017)
– Chen S, Tian L, Cai T, Yu M. (2017) A general statistical framework for subgroup identification and 

comparative treatment scoring. Biometrics, 73(4), 1199–1209.
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Doubly robust estimators of CATE

• Combines estimators of expected PO’s with IPW  (Athey and Wager, 2019; Kennedy, 
2021)

• Consistent if eat least PO or propensity model is correct

• Reduces variability compared with direct methods

• Let Δ 𝑥 = ෝ𝑚 1, 𝑥 − ෝ𝑚 0, 𝑥 be an estimator of CATE from any metalearner, 
causal forest, etc

Δ𝐷𝑅 𝑥 = Δ 𝑥 +
𝑇 − ො𝜋(𝑥)

ො𝜋 𝑥 1 − ො𝜋 𝑥
𝑌 − ෝ𝑚 𝑥 − 𝑇 − ො𝜋 𝑥 Δ 𝑥

34

where, 𝑚 𝑥 = 𝐸 𝑌 𝑋 = 𝑥



Modeling ITRs (outcome weighted learning)

Global outcome modeling: Y

𝛿=0

𝑥

Individual treatment regimen modeling: 𝐬𝐢𝐠𝐧{𝚫(x)}

Prescribe APrescribe B

Δ(𝑥)

While ITR can be estimated based on methods of outcome 
modeling (1) or treatment effect modeling (2), some 
methods estimate directly the sign of Δ(𝑥) by casting it as a
classification problem  (Zhao et al, 2012)

• One  approach is to write the expected value of ITR 

𝐸 𝑌 𝐷 𝑋 = 𝐸
𝐼 𝐷 𝑿 =𝑇 𝑌

Pr (𝑇|𝑥)
→ 𝑚𝑎𝑥

• This is equivalent to minimizing weighted classification 

loss 𝐸
𝐼 𝐷 𝑿 ≠𝑇 𝑌

Pr(𝑇|𝑥)
→ min

• Minimizing 0-1 loss is an NP problem so typically we 
modify it using a smooth convex surrogate loss function. 

E.g hinge, or exponential loss: 𝐸 𝐿𝑤 𝑇, 𝑓 𝑥

• This allows using off-the-shelf packages to identify ITRs, 
e.g. logistic regression with lasso penalty and weights 
𝑤𝑖 = 𝑌i/Pr(𝑇 = 𝑡i|X = 𝑥𝑖)
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Modeling ITRs: Recent advances

• Treatment allocation based on simultaneous  confidence band estimated 
from semiparametric modeling of Δ(𝑥) (Guo et al, 2021)

• Multi armed angle-based direct learning for ITR (Qi et al, 2020)
• Learning optimal ITR adopting risk/costs constraints (Wang et al, 2018) 
• Risk controlled decision trees and random forests for precision medicine 

(Doubleday et al, 2021)
• Searching treatment policies within a restricted class of fixed depth trees. 

Uses doubly robust estimator of treatment effect function. Athey and 
Wager (2021), policytree R package (by Sverdrup et al.) 
– Extending work on maximizing empirical welfare (value) of policies within 

restricted classes from randomized studies by Kitagawa and Tetenev (2018).
– Recent application/extension: CAPITAL: Optimal subgroup identification via 

constrained policy tree search (Cai et al, 2021)
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Direct subgroup search (local treatment effect modeling)

𝑥

Local treatment effect modeling : Subgroup search

Enhanced treatment effect 
for drug A

𝛿=0

Δ(𝑥)

• Instead of estimating the response 
function Δ(𝑥) on the entire covariate space 
and then carving out segments, search 
directly for such regions

• Recent methods

– SIDEScreen (Lipkovich and Dmitrienko, 2014)

– Adaptation of PRIM method  in Chen et al, 
2015

– Sequential-BATTing (Huang et al, 2017) 
implemented in R package SubgrID
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