Estimands, Missing Data, and Sensitivity Analysis

Geert Molenberghs

geert.molenberghs@uhasselt.be & geert.molenberghs@kuleuven.be

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat) Universiteit Hasselt & KU Leuven, Belgium

www.ibiostat.be

Interuniversity Institute for Biostatistics and statistical Bioinformatics

April 18, 2018

Survey Sampling 101

Survey population: The collection of units (individuals) about which the researcher wants to make quantitative statements.

Sample frame: The set of units (individuals) that has non-zero probability of being selected.

Sample: The subset of units that have been selected.

Probability sampling: The family of probabilistic (stochastic) methods by which a subset of the units from the sample frame is selected.

Design properties: The entire collection of methodological aspects that leads to the selection of a sample.

Sample size: The number of units in the sample.

Analysis and inference: The collection of statistical techniques by which population estimands are estimated.

Examples: estimation of means, averages, totals, linear regression, ANOVA, logistic regression, loglinear models.

Estimand: The true population quantity (e.g., the average body mass index of the US population).

Estimator: A (stochastic) function of the sample data, with the aim to "come close" to the estimand.

Estimate: A particular realization of the estimator, for the particular sample taken (e.g., 22.37).

Your M.o.t.R. Clinical Trial

• Setting:

Potential outcomes	(T_{0j}, T_{1j})
Individual treatment effect	$\Delta_{Tj} = T_{1j} - T_{0j}$
Expected treatment effect	$\beta = E(T_{1j} - T_{0j})$

- No missing data \implies 50% of missing data
- Fair to say: **Estimand** is $\beta = E(T_1 T_0)$ in **population**
- Randomization: Treatment effect estimable from observed data:
- Estimator: $\overline{T_1} \overline{T_0}$

• Information coming from:

- ⊳ data
- ⊳ design
- \triangleright × \Rightarrow sumptions×
- Would be different in an epidemiological study

Surrogate Endpoints Evaluation: Potential Outcomes

Alonso, Van der Elst, Molenberghs (Statistical Modeling 2016)

• Setting:

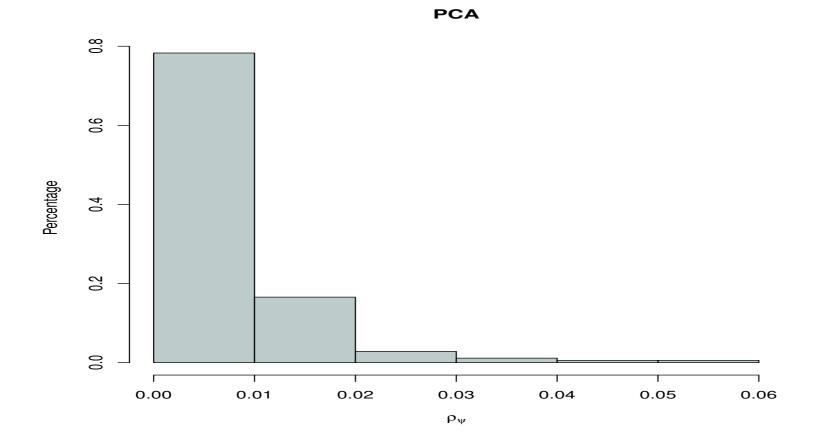
Potential outcomes	(T_{0j}, T_{1j})
Individual causal effect	$\Delta_{Tj} = T_{1j} - T_{0j}$
Expected causal effect	$\beta = E(T_{1j} - T_{0j})$
Surrogate	S_j

• Predictive causal association:

$$\rho_{\psi} = \operatorname{corr}(\Delta_{Tj}, S_j)$$

• (Un)identifiability:

 $\rho_{T_0T_1}$ not identifiable


• Information coming from:

⊳ data

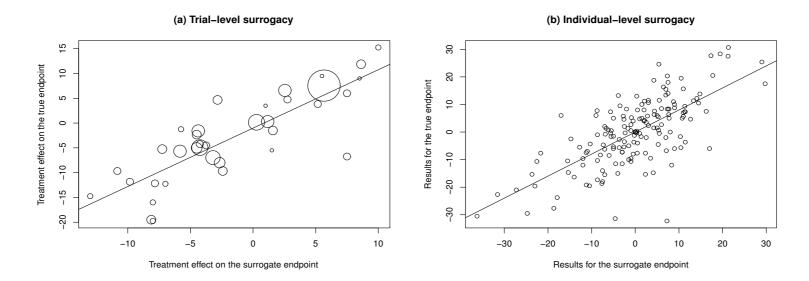
 \triangleright design

 \triangleright assumptions \longrightarrow sensitivity

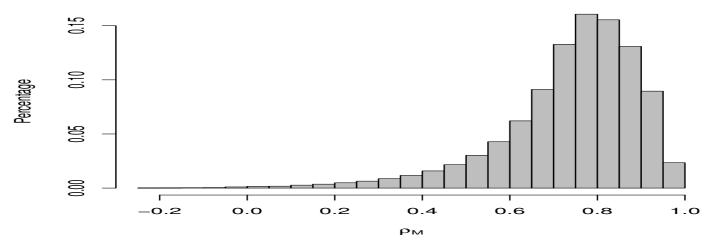
 \Rightarrow Sensitivity analysis for age-related macular degeneration trial:

Surrogate Endpoints Evaluation: Full Causal Paradigm

Alonso et al. (Biometrics 2015)


• Setting:

Treatment potential outcomes	(T_{0j}, T_{1j})
Treatment individual causal effect	$\Delta_{Tj} = T_{1j} - T_{0j}$
Surrogate potential outcomes	(S_{0j}, S_{1j})
Surrogate individual causal effect	$\Delta_{Sj} = S_{1j} - S_{0j}$


• Individual causal association (ICA):

$$\rho_{\Delta} = \operatorname{corr}(\Delta_{Tj}, \Delta_{Sj})$$

- Joint distribution unidentifiable
- Capture assumptions in **causal diagrams** \rightarrow reduced forms of ρ_{Δ}
- Information coming from:
 - ⊳ data
 - ⊳ design
 - \triangleright assumptions \longrightarrow sensitivity
- Meta-analytic version in multiple trials

Terms of Enrichment

Enriched data		
Coarse data	Augmented data	
Incomplete data	Randomized studies	
Censored data	Random effects	
Joint models	Latent classes	
Grouped data	Latent variables	
Non-compliance	Mixtures	

Increasing Complexity

- Standard clinical trial: design compensates for what is unobserved
- **Surrogacy:** augmentation: sensitivity is **design**-based
- Incomplete data/non-compliance: coarsening: sensitivity is (non-)observation-based
 - ▷ (Subjective) choices unavoidable
 - > Interference of intercurrent events
 - \triangleright Scenarios needed about $f(\boldsymbol{y}_i^m | \boldsymbol{y}_i^o, \boldsymbol{x}_i, \boldsymbol{\theta})$ (Devan, p. 9)
 - **> Such scenarios should preserve estimand**
 - \triangleright Easy and elegant with MI

Concluding Reflections

- Devan starts with the right point question: **WHY?**
- Both: taxonomy is a **GOOD** thing
 - Devan: Proper definitions needed: objective/question endpoint estimand
 Tom: principal stratification *can* be of help
- Sensitivity analysis 🚯 Estimands