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Selection Bias due to Missing Data

Selection bias is said to be present if in an observed sample, features
of the underlying population of primary scientific interest, are
entangled with features of the selection process not of scientific
interest.

In such situations, it may not be possible to identify population
features of interest from the observed sample, without explicitly
acknowledging the selection process.

Selection bias due to data missing not at random cannot be addressed
without an additional assumption.
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IV for missing data

A valid IV in this context must satisfy two conditions:

(i) first, the IV must not directly influence the outcome in the
underlying population, conditional on fully observed covariates.
(ii) second, the IV must influence the missingness mechanism
conditional on fully observed covariates.

Therefore, a valid IV must predict a person’s propensity to have an
observed outcome, without directly influencing the outcome itself.
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Causal diagram illustrating an IV

Y is MNAR therefore E (Y ) not identified. The estimand is the mean
outcome how contrary to fact all participants responded.

An IV Z is an exogeneous source of variation of R which is
independent of the outcome Y .
For example, researchers could build in an IV for missingness by
randomizing "imperfect" participation incentives, thus guaranteeing
conditions (i) and (ii) hold.
If randomization is not possible, researchers could still carefully select
observational IVs for missingness.
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Application

Data from the 2007 Zambia DHS to estimate HIV prevalence

Of those listed, men aged 15-59 years and women aged 15-49 years
were eligible for participation in an individual interview and HIV
testing.

In total, 7,146 eligible men were identified from 7,164 household
interviews; 7,116 (>99%) men had complete information from the
household interview.

5,145 (72%) provided a specimen for HIV testing. i.e. approx 30%
missing HIV status.
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IV in Zambia household survey

Interviewer characteristics such as gender, personality, and
interpersonal skills may lead to different response rates.

Given that the specific interviewer deployed to a household was
determined at random, his/her characteristics are unlikely to directly
influence an individual’s HIV status.
54 distinct interviewers conducted 50 or more household interviews
with men. Interviewer identity was highly associated with HIV testing
non-participation (P<0.001).
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IV-based partial inference

Inference with a valid IV:

provides a valid test of selection bias, because under the IV
assumptions, the presence of selection bias can be evaluated by a test
of association between Y and Z among complete-cases with R = 1.
With an IV Z one can obtain more informative bounds (Robins
1989,Manski, 1990): maxz Pr(Y = 1|R = 1, z)× Pr(R = 1|z) ≤
E (Y ) ≤ minz 1− {1− Pr(Y = 1|R = 1, z)} × Pr(R = 1|z)
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IV Bounds in Zambia

Test of selection bias p<0.0001
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DHS Zambia Results

Unadjusted, i.e. simple complete case estimate of HIV seropositive
prevalence of 12.2% (95% CI: 11.2% -13.1%),

IV-adjusted HIV prevalence estimate of 21.1% (95% CI: 16.2% to
25.9%) obtained using the proposed IV approach.

Smooth IV-bounds 95%CI =[14%− 27%] only slightly wider.
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